1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014)
2. Alemi, A.A., Chollet, F., Een, N., Irving, G., Szegedy, C., Urban, J.: DeepMath - deep sequence models for premise selection. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, USA, pp. 2243–2251. Curran Associates Inc. (2016)
3. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree search. CoRR, abs/1705.08439 (2017)
4. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: an environment for machine learning of higher order logic theorem proving. In: Chaudhuri, K., Salakhutdinov, R. (eds.) International Conference on Machine Learning, ICML 2019. Proceedings of Machine Learning Research, vol. 97, pp. 454–463. PMLR (2019)
5. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);W Bibel,2017