1. Camus, V., Mei, L., Enz, C., Verhelst, M.: Review and benchmarking of precision-scalable multiply-accumulate unit architectures for embedded neural-network processing. IEEE J. Emerging Selected Topics Circ. Syst. (JESTCS) 9(4), 697–711 (2019)
2. Weste, N.H.E., Harris, D.M.: CMOS VLSI Design, 4th edn. Addison-Wesley (Pearson), Boston (2011)
3. Schiavone, P., et al.: Slow and steady wins the race? a comparison of ultra-low-power RISC-V cores for Internet-of-Things applications. In: Proceedings 27th IEEE International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), pp. 1–8. IEEE, Thessaloniki, Greece (2017)
4. Gautschi, M., et al.: Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 25(10), 2700–2713 (2017)
5. Ottavi, G., Garofalo, A., Tagliavini, G., Conti, F., Benini, L., Rossi, D.: A mixed-precision RISC-V processor for extreme-edge DNN inference. In: Proceedings IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 512–517. IEEE, Limasson, Cyprus (2020)