1. Alekseev, V.E.: The effect of local constraints on the complexity of determination of the graph independence number. In: Combinatorial-Algebraic Methods in Applied Mathematics, pp. 3–13. Gor’kov. Gos. Univ., Gorki (1982)
2. Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Appl. Math. 135(1–3), 3–16 (2004). https://doi.org/10.1016/S0166-218X(02)00290-1
3. Alvarado, J.D., Dantas, S., Rautenbach, D.: Distance $$k$$-domination, distance $$k$$-guarding, and distance $$k$$-vertex cover of maximal outerplanar graphs. Discrete Appl. Math. 194, 154–159 (2015). https://doi.org/10.1016/j.dam.2015.05.010
4. Bacsó, G., Marx, D., Tuza, Z.: $$H$$-free graphs, independent sets, and subexponential-time algorithms. In: 11th International Symposium on Parameterized and Exact Computation, LIPIcs. Leibniz International Proceedings o Inform., vol. 63, pp. Art. No. 3, 12, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2017)
5. Brandstädt, A., Mosca, R.: Maximum weight independent set for $$\ell $$claw-free graphs in polynomial time. Discrete Appl. Math. 237, 57–64 (2018). https://doi.org/10.1016/j.dam.2017.11.029