Publisher
Springer Nature Switzerland
Reference18 articles.
1. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049 (2018)
2. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8) (2019)
3. Courrieu, P.: Three algorithms for estimating the domain of validity of feedforward neural networks. Neural Netw. 7(1), 169–174 (1994)
4. Cugny, R., Aligon, J., Chevalier, M., Roman Jimenez, G., Teste, O.: AutoxAI: a framework to automatically select the most adapted XAI solution. In: Proceedings of the 31st ACM International CIKM, New York, NY, USA, pp. 315–324 (2022)
5. Dua, D., Graff, C.: UCI machine learning repository (2017)