Publisher
Springer Nature Switzerland
Reference18 articles.
1. Cappuzzo, R., Papotti, P., Thirumuruganathan, S.: Local embeddings for relational data integration. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 1335–1349 (2020). https://doi.org/10.1145/3318464.3389742
2. Koutras, C., Fragkoulis, M., Katsifodimos, A., Lofi, C.: REMA: graph embedding-based relational schema matching. In: EDBT/ICDT Workshops (2020)
3. Rodrigues, D., da Silva, A.: A study on machine learning techniques for the schema matching network problem. J. Braz. Comput. Soc. 27(1), 14 (2021). https://doi.org/10.1186/s13173-021-00119-5
4. Hättasch, B., Truong-Ngoc, M., Schmidt, A., Binnig, C.: It’s AI match: a two-step approach for schema matching using embeddings. In: 2nd International Workshop on Applied AI for Database Systems and Applications (AIDB 2020) (2020)
5. Béres, F., Kelen, D.M., Pálovics, R., Benczúr, A.A.: Node embeddings in dynamic graphs. Appl. Netw. Sci. 2(4), 64 (2019). https://doi.org/10.1007/s41109-019-0169-5