Author:
del Campo Carlos,Sanz Borja,Díaz Jon,Onieva Enrique
Publisher
Springer Nature Switzerland
Reference19 articles.
1. Amador Coelho, R., Bambirra Torres, L.C., Leite de Castro, C.: Concept drift detection with quadtree-based spatial mapping of streaming data. Inf. Sci. 625, 578–592 (2023). https://doi.org/10.1016/j.ins.2022.12.085, https://www.sciencedirect.com/science/article/pii/S0020025522015808
2. Bibinbe, A.M.S.N., Mahamadou, A.J., Mbouopda, M.F., Nguifo, E.M.: DragStream: an anomaly and concept drift detector in univariate data streams. In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 842–851 (2022). https://doi.org/10.1109/ICDMW58026.2022.00113
3. Cerqueira, V., Gomes, H.M., Bifet, A., Torgo, L.: STUDD: a student-teacher method for unsupervised concept drift detection. Mach. Learn. 1–28 (2022)
4. Choudhary, V., Gupta, B., Chatterjee, A., Paul, S., Banerjee, K., Agneeswaran, V.: Detecting concept drift in the presence of sparsity-a case study of automated change risk assessment system. arXiv preprint arXiv:2207.13287 (2022)
5. Advances in Intelligent Systems and Computing;KS Desale,2022