Publisher
Springer International Publishing
Reference26 articles.
1. Agarwal, A., Kakade, S.M., Lee, J.D., Mahajan, G.: On the theory of policy gradient methods: optimality, approximation, and distribution shift (2019). https://doi.org/10.48550/ARXIV.1908.00261, https://arxiv.org/abs/1908.00261
2. Agarwal, A., Kakade, S.M., Lee, J.D., Mahajan, G.: Optimality and approximation with policy gradient methods in Markov decision processes. In: Proceedings of Thirty Third Conference on Learning Theory, pp. 64–66. PMLR (2020), https://proceedings.mlr.press/v125/agarwal20a.html
3. Alberg, D., Shalit, H., Yosef, R.: Estimating stock market volatility using asymmetric GARCH models. Appl. Finan. Econ. 18(15), 1201–1208 (2008). https://doi.org/10.1080/09603100701604225, http://www.tandfonline.com/doi/full/10.1080/09603100701604225
4. Assran, M., Romoff, J., Ballas, N., Pineau, J., Rabbat, M.: Gossip-based actor-learner architectures for deep reinforcement learning (2019). https://doi.org/10.48550/ARXIV.1906.04585, https://arxiv.org/abs/1906.04585
5. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J.: Reinforcement learning through asynchronous advantage actor-critic on a GPU (2016). https://doi.org/10.48550/ARXIV.1611.06256, https://arxiv.org/abs/1611.06256