Abstract
AbstractThe increasing demand for performance improvements in radiation detectors, driven by cutting-edge research in nuclear physics, astrophysics and medical imaging, is causing not only a proliferation in the variety of the radiation sensors, but also a growing necessity of tailored solutions for the front-end readout electronics. Within this work, novel solutions for application specific integrated circuits (ASICs) adopted in high-resolution X and $$\upgamma $$
γ
ray spectroscopy applications are studied. In the first part of this work, an ultra-low noise charge sensitive amplifier (CSA) is presented, with specific focus on sub-microsecond filtering, addressing the growing interest in high-luminosity experiments. The CSA demonstrated excellent results with Silicon Drift Detectors (SDDs), and with room temperature Cadmium-Telluride (CdTe) detectors, recording a state-of-the-art noise performance. The integration of the CSA within two full-custom radiation detection instruments realized for the ELETTRA (Trieste, Italy) and SESAME (Allan, Jordan) synchrotrons is also presented. In the second part of this work, an ASIC constellation designed for X-Gamma imaging spectrometer (XGIS) onboard of the THESEUS space mission is described. The presented readout ASIC has a highly customized distributed architecture, and integrates a complete on-chip signal filtering, acquisition and digitization with an ultra-low power consumption.
Publisher
Springer International Publishing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献