Adversarial Adaptation for French Named Entity Recognition

Author:

Choudhry ArjunORCID,Khatri InderORCID,Gupta PankajORCID,Gupta AaryanORCID,Nicol MaximeORCID,Meurs Marie-JeanORCID,Vishwakarma Dinesh KumarORCID

Publisher

Springer Nature Switzerland

Reference27 articles.

1. Choudhry, A., et al.: Transformer-based named entity recognition for French using adversarial adaptation to similar domain corpora (2022). https://doi.org/10.48550/ARXIV.2212.03692. Accessed 11 Jan 2023

2. Copara, J., Knafou, J., Naderi, N., Moro, C., Ruch, P., Teodoro, D.: Contextualized French language models for biomedical named entity recognition. In: Actes de la 6e conférence conjointe Journées d’Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Atelier DÉfi Fouille de Textes. pp. 36–48. ATALA et AFCP, Nancy, France (2020), https://aclanthology.org/2020.jeptalnrecital-deft.4. Accessed 11 Jan 2023

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423. Accessed 11 Jan 2023

4. Ganin, Y., Lempitsky, V.: Unsupervised Domain Adaptation by Backpropagation (2014). https://doi.org/10.48550/ARXIV.1409.7495. Accessed 11 Jan 2023

5. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016). http://jmlr.org/papers/v17/15-239.html. Accessed 11 Jan 2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3