1. Poostchi, M., Silamut, K., Maude, R., Jaeger, S., Thoma, G.: Image analysis and machine learning for detecting malaria. Trans. Res. 194, 36–55 (2018)
2. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K.: Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)
3. Nijhawan, R., Verma, R., Bhushan, S., Dua, R., Mittal, A.: An integrated deep learning framework approach for nail disease identification. In: Proceedings of 13th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 197–202. IEEE (2017)
4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
5. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)