Skeleton-Based Clustering by Quasi-Threshold Editing

Author:

Brandes UlrikORCID,Hamann MichaelORCID,Häuser Luise,Wagner DorotheaORCID

Abstract

AbstractWe consider the problem of transforming a given graph into a quasi-threshold graph using a minimum number of edge additions and deletions. Building on the previously proposed heuristic Quasi-Threshold Mover (QTM), we present improvements both in terms of running time and quality. We propose a novel, linear-time algorithm that solves the inclusion-minimal variant of this problem, i.e., a set of edge edits such that no subset of them also transforms the given graph into a quasi-threshold graph. In an extensive experimental evaluation, we apply these algorithms to a large set of graphs from different applications and find that they lead QTM to find solutions with fewer edits. Although the inclusion-minimal algorithm needs significantly more edits on its own, it outperforms the initialization heuristic previously proposed for QTM.

Publisher

Springer Nature Switzerland

Reference34 articles.

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004). https://doi.org/10.1023/B:MACH.0000033116.57574.95

2. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: A fixed-parameter approach for weighted cluster editing. In: APBC, pp. 211–220. Imperial College Press (2008). http://www.comp.nus.edu.sg/%7Ewongls/psZ/apbc2008/apbc050a.pdf

3. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000). https://doi.org/10.1016/S0378-8733(99)00019-2

4. Lecture Notes in Computer Science;U Brandes,2015

5. Lecture Notes in Computer Science;U Brandes,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3