Increasing the Sampling Efficiency for the Link Assessment Problem

Author:

Chinazzo André,De Schryver Christian,Zweig Katharina,Wehn Norbert

Abstract

AbstractComplex graphs are at the heart of today’s big data challenges like recommendation systems, customer behavior modeling, or incident detection systems. One reoccurring task in these fields is the extraction of network motifs, which are subgraphs that are reoccurring and statistically significant. To assess the statistical significance of their occurrence, the observed values in the real network need to be compared to their expected value in a random graph model.In this chapter, we focus on the so-called Link Assessment (LA) problem, in particular for bipartite networks. Lacking closed-form solutions, we require stochastic Monte Carlo approaches that raise the challenge of finding appropriate metrics for quantifying the quality of results (QoR) together with suitable heuristics that stop the computation process if no further increase in quality is expected. We provide investigation results for three quality metrics and show that observing the right metrics reveals so-called phase transitions that can be used as a reliable basis for such heuristics. Finally, we propose a heuristic that has been evaluated with real-word datasets, providing a speedup of $$15.4\times $$ 15.4 × over previous approaches.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3