Publisher
Springer Nature Switzerland
Reference50 articles.
1. Five ways satellite images, remote sensing and smartphones are combining to transform agriculture. https://www.cgiar.org/news-events/news/five-ways-satellite-images-remote-sensing-and-smartphones-are-combining-to-transform-agriculture/. Accessed 7 Feb 2023
2. Barman, U., Choudhury, R.D.: Prediction of soil pH using smartphone based digital image processing and prediction algorithm. J. Mech. Contin. Math. Sci. 14, 226–249 (2019)
3. Chandraprabha, M., Dhanaraj, R.K.: Soil based prediction for crop yield using predictive analytics. In: 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pp. 265–270. IEEE (2021)
4. Chen, D., et al.: Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 669, 844–855 (2019)
5. Diaz-Gonzalez, F.A., et al.: Machine learning and remote sensing techniques applied to estimate soil indicators-review. Ecolog. Indicat. 135, 108517 (2022)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献