1. AMiner. https://www.aminer.org/citation
2. Alva-Manchego, F., Martin, L., Bordes, A., Scarton, C., Sagot, B., Specia, L.: Asset: a dataset for tuning and evaluation of sentence simplification models with multiple rewriting transformations. arXiv preprint arXiv:2005.00481 (2020)
3. Bellot, P., Moriceau, V., Mothe, J., SanJuan, E., Tannier, X.: INEX tweetcontextualization task: evaluation, results and lesson learned. Inf. Process.Manage. 52(5), 801–819 (2016). https://doi.org/10.1016/j.ipm.2016.03.002
4. Biran, O., Brody, S., Elhadad, N.: Putting it simply: a context-aware approach to lexical simplification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 496–501. Association for Computational Linguistics, Portland, Oregon, USA, June 2011. https://www.aclweb.org/anthology/P11-2087
5. Chen, P., Rochford, J., Kennedy, D.N., Djamasbi, S., Fay, P., Scott, W.: Automatic text simplification for people with intellectual disabilities. In: Artificial Intelligence Science and Technology, pp. 725–731. WORLD SCIENTIFIC, November 2016. https://doi.org/10.1142/9789813206823_0091, https://www.worldscientific.com/doi/abs/10.1142/9789813206823_0091