1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/TMI.2019.2897538. https://ieeexplore.ieee.org/document/8633930/
2. Bepler, T., Zhong, E.D., Kelley, K., Brignole, E., Berger, B.: Explicitly disentangling image content from translation and rotation with spatial-VAE. In: Advances in Neural Information Processing Systems, pp. 15409–15419 (2019). http://arxiv.org/abs/1909.11663
3. Detlefsen, N.S., Hauberg, S.: Explicit disentanglement of appearance and perspective in generative models. In: Advances in Neural Information Processing Systems, pp. 1016–1026 (2019). http://arxiv.org/abs/1906.11881
4. Hauberg, S., Freifeld, O., Lindbo Larsen, A.B., Fisher, J.W., Hansen, L.K.: Dreaming more data: class-dependent distributions over diffeomorphisms for learned data augmentation. In: Proceedings of 19th International Conference on Artificial Intelligence and Statistics, pp. 342–350 (2016)
5. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z. https://doi.org/10.1038/s41592-020-01008-zhttp://www.nature.com/articles/s41592-020-01008-z