Author:
Tribedi Shubham,Biswas Anuraag,Ghosh Swarup Kr,Ghosh Anupam
Publisher
Springer International Publishing
Reference34 articles.
1. J. Samuel, G.G.M. Nawaz Ali, M.M. Rahaman, E. Esawi, Y. Samuel: COVID 19 Public sentiment insights and machine learning for tweets classification. Information 11(6), 1–3 (2020)
2. K.H. Manguri, R.N. Ramadhan, P. Rasul, M. Amin, Twitter sentiment analysis on worldwide COVID-19 outbreaks. Kurdistan J. Appl. Res. 5, 54–55 (2020)
3. N. Aguilar-Gallegos, L.E. Romero-García, E.G. Martínez-González, E.I. García-Sánchez, J. Aguilar-Ávila, Datasets on dynamics of coronavirus on Twitter. Data Brief 30, 105684 (2020)
4. C. Ordun, S. Purosatham, E. Raff, Exploratory analysis of COVID-19 tweets using topic modelling, UMAP and Di-graphs (arXiv, 2020), pp. 1–2
5. R.J. Medford, S.N. Saleh, A. Sumarsono, T.M. Perl, C.U.J. Lehmann, An “infodemic”: leveraging high-volume twitter data to understand public sentiment for the COVID-19 outbreak. Kurdistan J. Appl. Res. 7(7), 2–3 (2020)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Embedded Deep NN with Convolution NN-ID to Binominal Sentiment Prediction;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04
2. Fitweet: Arduino-Based Smartwatch for Early Anticipatory Anxiety Notification System;Lecture Notes in Electrical Engineering;2023