Ethical Challenges of Artificial Intelligence in Medicine and the Triple Semantic Dimensions of Algorithmic Opacity with Its Repercussions to Patient Consent and Medical Liability

Author:

Nogaroli Rafaella,Faleiros Júnior José Luiz de Moura

Abstract

AbstractArtificial intelligence algorithms have the potential to diagnose some types of skin cancer or to identify specific heart-rhythm abnormalities as well as (or even better) than board-certified dermatologists and cardiologists. However, one of the biggest fears in the healthcare sector in the Era of AI in Medicine is the so-called black box medicine, given the obscurity in the way information is processed by algorithms. More broadly, it is observed that there are three different semantic dimensions of algorithmic opacity relevant to Medicine: (1) epistemic opacity for the insufficient physicians understanding of the rules an AI system is applying to make predictions and decisions; (2) opacity for the lack of medical disclosure about the AI systems to support clinical decisions and patient’s unawareness that automated decision-making are being carried out with their personal data; (3) explanatory opacity for the unsatisfactory explanation to patients about the technology used to support professional decision-making. Therefore, the aim of this study is to analyze each type of opacity, considering hypothetical scenarios and its repercussions in terms of medical malpractice and patient’s informed consent. From this, it will be defined ethical challenges of using AI in the healthcare sector and the importance of medical education.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3