Hybrid Controller Synthesis for Nonlinear Systems Subject to Reach-Avoid Constraints

Author:

Yang Zhengfeng,Zhang Li,Zeng XiaORCID,Tang Xiaochao,Peng Chao,Zeng Zhenbing

Abstract

AbstractThere is a pressing need for learning controllers to endow systems with properties of safety and goal-reaching, which are crucial for many safety-critical systems. Reinforcement learning (RL) has been deployed successfully to synthesize controllers from user-defined reward functions encoding desired system requirements. However, it remains a significant challenge in synthesizing provably correct controllers with safety and goal-reaching requirements. To address this issue, we try to design a special hybrid polynomial-DNN controller which is easy to verify without losing its expressiveness and flexibility. This paper proposes a novel method to synthesize such a hybrid controller based on RL, low-degree polynomial fitting and knowledge distillation. It also gives a computational approach, by building and solving a constrained optimization problem coming from verification conditions to produce barrier certificates and Lyapunov-like functions, which can guarantee every trajectory from the initial set of the system with the resulted controller satisfies the given safety and goal-reaching requirements. We evaluate the proposed hybrid controller synthesis method on a set of benchmark examples, including several high-dimensional systems. The results validate the effectiveness and applicability of our approach.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3