1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of 20th International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann, Santiago de Chile (1994)
2. Bayardo, R., Goethals, B., Zaki, M.J. (eds.) Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations. Brighton (2004).
http://fimi.ua.ac.be/
3. Dalkilic, M.M., Roberston, E.L.: Information dependencies. In: Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 245–253. ACM, Dallas (2000)
4. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)
5. Heikinheimo, H., Hinkkanen, E., Mannila, H., Mielikinen, T., Seppnen, J.K.: Finding low-entropy sets and trees from binary data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 350. ACM, San Jose (2007)