1. Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems. Discrete Math. 1, 343–362 (1977)
2. Lazarev, A.A., Pravdivets, N.A., Barashov, E.B.: Approximation of the objective function of scheduling theory problems. In: Abstracts of the 13th International Conference “Intellectualization of Information Processing” (Moscow, 2020), pp. 404–409. Russian Academy of Sciences, Moscow (2020). (in Russian)
3. Meng, D., et al.: Reliability-based optimisation for offshore structures using saddlepoint approximation. In: Proceedings of the Institution of Civil Engineers-Maritime Engineering, vol. 173(2), pp. 33–42. Thomas Telford Ltd. (2020)
4. Headley, D., et al.: Approximating the quantum approximate optimisation algorithm. arXiv preprint arXiv:2002.12215 (2020)
5. Huotari, J., et al.: Convex optimisation model for ship speed profile: optimisation under fixed schedule. J. Marine Sci. Eng. 9(7), 730 (2021)