1. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. ICML 2000, 57–64 (2000)
2. Cawley, G.C.: Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 1661–1668. IEEE (2006)
3. Chen, X., Xiao, Y.: Geometric projection twin support vector machine for pattern classification. Multimedia Tools Appl. 58, 1–17 (2020)
4. Cherkassky, V., Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17(1), 113–126 (2004)
5. Collobert, R., Bengio, S.: Svmtorch: Support vector machines for large-scale regression problems. J. Mach. Learn. Res. 1, 143–160 (2001)