Author:
Hazra Tanmoy,Anjaria Kushal,Bajpai Aditi,Kumari Akshara
Publisher
Springer Nature Switzerland
Reference26 articles.
1. Albaba, B. M., & Yildiz, Y. (2021). Driver modeling through deep reinforcement learning and behavioral game theory. IEEE Transactions on Control Systems Technology, 30(2), 885–892.
2. Ardekani, A. A., Chahe, A., & Yazdi, M. R. H. (2022, November). Combining deep learning and game theory for path planning in autonomous racing cars. In 2022 10th RSI international conference on robotics and mechatronics (ICRoM) (pp. 564–571). IEEE.
3. Arora, S., Ge, R., Liang, Y., Ma, T., & Zhang, Y. (2017). Generalization and equilibrium in generative adversarial nets (gans). In: Proceedings of the 34th international conference on machine learning, Vol. 70. JMLR.org (pp. 224–232).
4. Dasgupta, P., & Collins, J. (2019). A survey of game theoretic approaches for adversarial machine learning in cybersecurity tasks. AI Magazine, 40(2), 31–43. https://doi.org/10.1609/aimag.v40i2.2847.
5. Foahom Gouabou, A. C., Collenne, J., Monnier, J., Iguernaissi, R., Damoiseaux, J. L., Moudafi, A., & Merad, D. (2022). Computer aided diagnosis of melanoma using deep neural networks and game theory: Application on Dermoscopic images of skin lesions. International Journal of Molecular Sciences, 23(22), 13838.