Author:
Tekriwal Mohit,Duraisamy Karthik,Jeannin Jean-Baptiste
Publisher
Springer International Publishing
Reference33 articles.
1. Navier-stokes equations. https://www.grc.nasa.gov/WWW/k-12/airplane/nseqs.html. Accessed 20 Sep 2020
2. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: Elfic Coq library for formalization of Lax-Milgram theorem. https://www.lri.fr/sboldo/elfic/index.html. Accessed 20 Sep 2020
3. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: A Coq formal proof of the Lax-Milgram theorem. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, pp. 79–89. ACM (2017)
4. Lecture Notes in Computer Science;S Boldo,2010
5. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave equation numerical resolution: a comprehensive mechanized proof of a c program. J. Autom. Reasoning 50(4), 423–456 (2013)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献