The Potential of Dental Calculus as a Novel Source of Biological Isotopic Data

Author:

Salazar-García Domingo C.,Warinner Christina,Eerkens Jelmer W.,Henry Amanda G.

Abstract

AbstractStable isotope analysis has become an essential tool in investigations of ancient migration and paleodietary reconstruction. Because the biogeochemistry of bone collagen and apatite is well known, current methods rely almost exclusively on analyses of bones and teeth; however, dental calculus represents a potentially additional biological source of isotopic data from ancient skeletons. Dental calculus is a mineralized bacterial biofilm that forms on the surfaces of teeth. Sampling dental calculus does not damage the dentition and thus can be used in cases where it is not possible to perform destructive analyses of conventional mineralized tissues. Like bone and dentine, dental calculus contains both inorganic and organic components, allowing measurement of C, N, O, H, and Sr isotopes. Additionally, dental calculus forms as serial, non-remodeling laminar accretions on the tooth surface, opening up the possibility of analyzing discrete time points during the lifetime of an individual. However, as a microbial biofilm and not a human tissue, the biochemistry of dental calculus is complex, containing multiple calcium phosphate mineral phases, organic and inorganic food remains, hundreds of human and bacterial proteins, and diverse biomolecules from thousands of endogenous bacterial taxa. Isotopic investigation of dental calculus is still in its infancy, and many questions remain regarding its formation and processes of diagenesis. This chapter (1) reviews the unique advantages presented by dental calculus as a novel source of biological isotopic data, (2) critically evaluates published isotopic studies of dental calculus, and (3) explores the current challenges of dental calculus stable isotope analysis through a case study of an Ancient Puebloan Basketmaker II population from the American Southwest.

Publisher

Springer International Publishing

Reference86 articles.

1. Adler, C. J., Dobney, K., Weyrich, L. S., Kaidonis, J., Walker, A. W., Haak, W., Bradshaw, C. J. A., Townsend, J., Sołtysiak, A., Alt, K. W., Parkhill, J., & Cooper, A. (2013). Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and industrial revolutions. Nature Genetics, 45, 450–455.

2. Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. B. Lambert & G. Gruppe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 1–37). Springer.

3. Beaumont, J., Gledhill, A., Lee-Thorp, J., & Montgomery, J. (2012). Childhood diet: A closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine. Archaeometry, 55(2), 277–295.

4. Bol, R., & Pflieger, C. (2002). Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals. Rapid Communications in Mass Spectrometry, 16, 2195–2200.

5. Britton, K., Gauzinski-Windheuser, S., Roebroeks, W., Kindler, L., & Richards, M. P. (2011). Stable isotope analysis of well-preserved 120,000-year-old herbivore bone collagen from the middle Palaeolithic site of Neumark-Nord 2, Germany reveals niche separation between bovids and equids. Palaeogeography, Palaeoclimatology, Palaeoecology, 333–334, 168–177.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3