Author:
Zhang Zhifeng,Kuang Jinhui,Cui Xiao,Ji Xiaohui,Ma Junxia,Cai Jinghan,Zhao Zhe
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Lin, C., et al.: Chromosome cluster identification framework based on geometric features and machine learning algorithms. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2357–2363 (2020)
2. Song, J., Yu, J., Tian J., et al.: Study on reducing birth defects by amniotic fluid karyotype analysis. J. Hebei Med. Univ. 43(02), 173–176+217 (2022)
3. Karvelis, P.S., Tzallas, A.T., Fotiadis, D.I., Georgiou, I.: A multichannel watershed-based segmentation method for multispectral chromosome classification. IEEE Trans. Med. Imaging 27(5), 697–708 (2008)
4. Munot, M.V.: Development of computerized systems for automated chromosome analysis: current status and future prospects. Int. J. Adv. Res. Comput. Sci. 9(1), 782–791 (2018)
5. Grisan, E., Poletti, E., Ruggeri, A.: Automatic segmentation and disentangling of chromosomes in Q-band prometaphase images. IEEE Trans. Inf Technol. Biomed. 13(4), 575–581 (2009)