1. Amel, K.R.: From shallow to deep interactions between knowledge representation, reasoning and machine learning. In: Proceedings 13th International Conference Scala Uncertainity Mgmt (SUM 2019), Compiegne, LNCS, pp. 16–18 (2019)
2. Anseán, D., Baure, G., González, M., Cameán, I., García, A., Dubarry, M.: Mechanistic investigation of silicon-graphite/LiNi0.8Mn0.1Co0.1O2 commercial cells for non-intrusive diagnosis and prognosis. J. Power Sour. 459, 227882 (2020)
3. Bauckhage, C., Ojeda, C., Schücker, J., Sifa, R., Wrobel, S.: Informed machine learning through functional composition. In: LWDA, pp. 33–37 (2018)
4. Birkl, C.R., Roberts, M.R., McTurk, E., Bruce, P.G., Howey, D.A.: Degradation diagnostics for lithium ion cells. J. Power Sour. 341, 373–386 (2017)
5. Bloom, I., Jansen, A.N., Abraham, D.P., Knuth, J., Jones, S.A., Battaglia, V.S., Henriksen, G.L.: Differential voltage analyses of high-power, lithium-ion cells: 1. technique and application. J. Power Sour. 139(1–2), 295–303 (2005)