Publisher
Springer Nature Switzerland
Reference13 articles.
1. Xu, J., Yue, H.: Research on fault diagnosis method of power grid based on artificial intelligence. In: 2020 IEEE Conference on Telecommunications, Optics and Computer Science, TOCS 2020, pp. 113–116 (2020). https://doi.org/10.1109/TOCS50858.2020.9339711
2. Mukherjee, A., Kundu, P.K., Das, A.: Transmission line faults in power system and the different algorithms for identification, classification and localization: a brief review of methods. J. Inst. Eng. (India) Ser. B 102(4), 855–877 (2021). https://doi.org/10.1007/s40031-020-00530-0
3. Doria-García, J., Orozco-Henao, C., Leborgne, R., Montoya, O.D., Gil-González, W.: High impedance fault modeling and location for transmission line✰. Electr. Power Syst. Res. 196, 107202 (Jul.2021). https://doi.org/10.1016/J.EPSR.2021.107202
4. Chai, E., Zeng, P.P., Ma, S., Xing, H., Zhao, B.: Artificial intelligence approaches to fault diagnosis in power grids: a review. In: Chinese Control Conference, CCC, vol. 2019, pp. 7346–7353, July 2019. https://doi.org/10.23919/ChiCC.2019.8865533
5. Schneider, E.: A1 fundamentals of protection practice network protection & automation guide (2021). Accessed 29 May 2022. https://www.se.com/ww/en/tools/npag-full-online-unlocked-1130re14y/section.html#section1