1. Anwar, T.: COVID19 diagnosis using AutoML from 3D CT scans. In: IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) (2021). https://doi.org/10.1109/ICCVW54120.2021.00061
2. Borkowski, A.A., Viswanadhan, N.A., Thomas, L.B., Guzman, R.D., Deland, L.A., Mastorides, S.M.: Using artificial intelligence for COVID-19 chest x-ray diagnosis. Federal Pract. 37(9), 398–404 (2020). https://doi.org/10.12788/fp.0045
3. Bradley, W.G.: History of medical imaging. In: Proceedings of the American Philosophical Society, vol. 152, pp. 349–361 (2008). http://websites.umich.edu/ners580/ners-bioe_481/lectures/pdfs/2008-09-procAmerPhilSoc_Bradley-MedicalImagingHistory.pdf
4. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Conference on Neural Information Processing Systems (NeurIPS) (2020)
5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607 (2020)