Author:
Ahamed Syed Imtiaz,Ravi Vadlamani,Gopi Pranay
Publisher
Springer Nature Switzerland
Reference39 articles.
1. Al-Rubaie, M., Chang, J.M.: Privacy-preserving machine learning: threats and solutions. IEEE Secur. Priv. 17(2), 49–58 (2019)
2. Truong, N., Sun, K., Wang, S., Guitton, F., Guo, Y.K.: Privacy preservation in federated learning: an insightful survey from the GDPR perspective, Comput. Secur. 110, 102402 (2021). ISSN 0167-4048
3. Stallings, W.: Handling of personal information and deidentified, aggregated, and pseudonymized information under the California consumer privacy act. IEEE Secur. Priv. 18(1), 61–64 (2020)
4. Chik, W.: The Singapore Personal Data Protection Act and an assessment of future trends in data privacy reform. Comput. Law Secur. Rev. 29, 554–575 (2013)
5. Xu, R., Baracaldo, N., Joshi, J.: Privacy-preserving machine learning: methods, challenges and directions (2021). arXiv preprint arXiv:2108.04417