Author:
Xu Hao,Schneider Jurgen E.,Grau Vicente
Publisher
Springer International Publishing
Reference14 articles.
1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
2. Karamitsos, T.D., Francis, J.M., Myerson, S., Selvanayagam, J.B., Neubauer, S.: The role of cardiovascular magnetic resonance imaging in heart failure. J. Am. Coll. Cardiol. 54(15), 1407–1424 (2009)
3. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE CVPR, pp. 3431–3440 (2015)
4. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE TMI 37(2), 384–395 (2018)
5. Lecture Notes in Computer Science;RPK Poudel,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Shape constrained CNN for segmentation guided prediction of myocardial shape and pose parameters in cardiac MRI;Medical Image Analysis;2022-10
2. Left Ventricular Parameter Regression from Deep Feature Maps of a Jointly Trained Segmentation CNN;Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges;2020
3. Left Ventricle Quantification with Cardiac MRI: Deep Learning Meets Statistical Models of Deformation;Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges;2020
4. Left Ventricle Quantification Using Direct Regression with Segmentation Regularization and Ensembles of Pretrained 2D and 3D CNNs;Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges;2020