Exosomal miR-486-5p derived from human placental microvascular endothelial cells regulates proliferation and invasion of trophoblasts via targeting IGF1

Author:

Ma Ruixia,Liang Zhijiang,Shi Xiaomei,Xu Linli,Li Xiaowei,Wu Jinhua,Zhao LinaORCID,Liu Guocheng

Abstract

AbstractPreeclampsia (PE) is a serious complication of pregnancy. Exosomes are known to be upregulated in PE. In this study, we sought to investigate the effect of miR-486-5p from human placental microvascular endothelial cells, on the function of trophoblast cells. To investigate the function of human placental microvascular endothelial cell (HPVEC)-derived exosomes on trophoblast cells, HPVECs were treated with hypoxia/reoxygenation (H/R). The separation efficiency of exosomes was determined by transmission electron microscopy, nanosight and Western blot. Cell Counting Kit-8, EdU staining, wound-healing, and transwell assay were performed to detect the effect of exosomally transferred miR-486-5p inhibitor on proliferation, migration and invasion of trophoblast cells. MiRDB and dual-luciferase report assay were used to find the target of miR-486-5p. Our data revealed that miR-486-5p was significantly upregulated in H/R-treated HPVEC-Exo, and miR-486-5p was enriched in HPVEC-Exo. miR-486-5p inhibitor carried by HPVEC-Exo significantly inhibited the proliferation, migration and invasion of trophoblast cells. Insulin-like growth factor 1 (IGF1) was found to be the target of miR-486-5p, and IGF1 overexpression notably reversed the effect of miR-486-5p inhibitor from HPVEC-Exo on trophoblast cell function. In summary, H/R-treated HPVEC-derived exosomally expressing miR-486-5p inhibitor significantly inhibited the proliferation, migration and invasion of trophoblast cells via downregulation of IGF1. The findings from the present study may be useful in the development of treatments for PE.

Funder

Natural Science Foundation of Tibet Autonomous Region

Traditional Chinese Medicine Bureau of Guangdong Provincial

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3