Seed-specific expression of porcine verotoxigenic Escherichia coli antigens in tobacco plants as a potential model of edible vaccines

Author:

Reggi SerenaORCID,Dell’Anno MatteoORCID,Baldi AntonellaORCID,Rossi LucianaORCID

Abstract

AbstractVaccines can reduce the use of antibiotics by preventing specific infective diseases in pigs. Plant-based edible vaccines are particularly attractive because, upon oral ingestion via feed, they can elicit the local immune system against a foreign disease-causing organism. The aim of this study was to engineer two different independent lines of tobacco plants for the seed-specific expression of immunogenic proteins of VTEC as a model of an edible vaccine. For each antigen, fifty Nicotiana tabacum L. cv Xanthi leaf disks were transformed by agroinfection for the seed-specific expression of the structural parts of the fimbrial subunit FedF of F18 and the B-subunit of Vt2e genes. The synthetic genes, optimized by the codon adaptation index for their expression in tobacco, were inserted into expression cassettes under the control of β-conglycinin promoter. Regenerated tobacco plants (T0) were characterized by molecular and immunoenzymatic techniques. Our results showed that both FedF and Vt2eB genes were integrated into tobacco genome efficiently (> 80%) and they are also maintained in the second generation (T1). Western blotting analyses carried out on the positive producing lines, showed the tissue-specific expression in seeds and the temporal protein accumulation in the mid-late maturation phases. The enzyme-linked immunosorbent assay showed seed expression levels of 0.09 to 0.29% (from 138 to 444 µg/g of seeds) and 0.21 to 0.43% (from 321 to 658 µg/g of seeds) of total soluble protein for the FedF and Vt2eB antigens, respectively. This study confirmed the seed-specific expression of the selected antigens in plant seeds. The expression level is suitable for seed-based edible vaccination systems, which could represent a cost-effective way to prevent VTEC infection. Our findings encourage further in vivo studies focused on the activation of the local immune response.

Funder

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3