Abstract
AbstractVaccines can reduce the use of antibiotics by preventing specific infective diseases in pigs. Plant-based edible vaccines are particularly attractive because, upon oral ingestion via feed, they can elicit the local immune system against a foreign disease-causing organism. The aim of this study was to engineer two different independent lines of tobacco plants for the seed-specific expression of immunogenic proteins of VTEC as a model of an edible vaccine. For each antigen, fifty Nicotiana tabacum L. cv Xanthi leaf disks were transformed by agroinfection for the seed-specific expression of the structural parts of the fimbrial subunit FedF of F18 and the B-subunit of Vt2e genes. The synthetic genes, optimized by the codon adaptation index for their expression in tobacco, were inserted into expression cassettes under the control of β-conglycinin promoter. Regenerated tobacco plants (T0) were characterized by molecular and immunoenzymatic techniques. Our results showed that both FedF and Vt2eB genes were integrated into tobacco genome efficiently (> 80%) and they are also maintained in the second generation (T1). Western blotting analyses carried out on the positive producing lines, showed the tissue-specific expression in seeds and the temporal protein accumulation in the mid-late maturation phases. The enzyme-linked immunosorbent assay showed seed expression levels of 0.09 to 0.29% (from 138 to 444 µg/g of seeds) and 0.21 to 0.43% (from 321 to 658 µg/g of seeds) of total soluble protein for the FedF and Vt2eB antigens, respectively. This study confirmed the seed-specific expression of the selected antigens in plant seeds. The expression level is suitable for seed-based edible vaccination systems, which could represent a cost-effective way to prevent VTEC infection. Our findings encourage further in vivo studies focused on the activation of the local immune response.
Funder
Università degli Studi di Milano
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献