Assignment flows for data labeling on graphs: convergence and stability

Author:

Zern ArtjomORCID,Zeilmann AlexanderORCID,Schnörr ChristophORCID

Abstract

AbstractThe assignment flow recently introduced in the J. Math. Imaging and Vision 58/2 (2017) constitutes a high-dimensional dynamical system that evolves on a statistical product manifold and performs contextual labeling (classification) of data given in a metric space. Vertices of an underlying corresponding graph index the data points and define a system of neighborhoods. These neighborhoods together with nonnegative weight parameters define the regularization of the evolution of label assignments to data points, through geometric averaging induced by the affine e-connection of information geometry. From the point of view of evolutionary game dynamics, the assignment flow may be characterized as a large system of replicator equations that are coupled by geometric averaging. This paper establishes conditions on the weight parameters that guarantee convergence of the continuous-time assignment flow to integral assignments (labelings), up to a negligible subset of situations that will not be encountered when working with real data in practice. Furthermore, we classify attractors of the flow and quantify corresponding basins of attraction. This provides convergence guarantees for the assignment flow which are extended to the discrete-time assignment flow that results from applying a Runge–Kutta–Munthe–Kaas scheme for the numerical geometric integration of the assignment flow. Several counter-examples illustrate that violating the conditions may entail unfavorable behavior of the assignment flow regarding contextual data classification.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference35 articles.

1. Amari, S.I., Nagaoka, H.: Methods of Information Geometry. Oxford Univ. Press, Oxford (2000)

2. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imag. Vision 58(2), 211–238 (2017)

3. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry, Ergebnisse Der Mathematik Und Ihrer Grenzgebiete 34, vol. 64. Springer, Cham (2017)

4. Belitskii, G., Rayskin, V.: On the Grobman–Hartman theorem in $$\alpha $$-Hölder class for Banach spaces. preprint (2009)

5. Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Iterative multiplicative filters for data labeling. Int. J. Comput. Vision 123(3), 435–453 (2017)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the geometric mechanics of assignment flows for metric data labeling;Information Geometry;2023-11-03

2. Quantum State Assignment Flows;Entropy;2023-08-23

3. A Nonlocal Graph-PDE and Higher-Order Geometric Integration for Image Labeling;SIAM Journal on Imaging Sciences;2023-03-30

4. Learning Linearized Assignment Flows for Image Labeling;Journal of Mathematical Imaging and Vision;2023-01

5. Quantum State Assignment Flows;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3