Geometric thermodynamics for the Fokker–Planck equation: stochastic thermodynamic links between information geometry and optimal transport

Author:

Ito SosukeORCID

Abstract

AbstractWe propose a geometric theory of non-equilibrium thermodynamics, namely geometric thermodynamics, using our recent developments of differential-geometric aspects of entropy production rate in non-equilibrium thermodynamics. By revisiting our recent results on geometrical aspects of entropy production rate in stochastic thermodynamics for the Fokker–Planck equation, we introduce a geometric framework of non-equilibrium thermodynamics in terms of information geometry and optimal transport theory. We show that the proposed geometric framework is useful for obtaining several non-equilibrium thermodynamic relations, such as thermodynamic trade-off relations between the thermodynamic cost and the fluctuation of the observable, optimal protocols for the minimum thermodynamic cost and the decomposition of the entropy production rate for the non-equilibrium system. We clarify several stochastic-thermodynamic links between information geometry and optimal transport theory via the excess entropy production rate based on a relation between the gradient flow expression and information geometry in the space of probability densities and a relation between the velocity field in optimal transport and information geometry in the space of path probability densities.

Funder

Japan Society for the Promotion of Science

Precursory Research for Embryonic Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Geometry and Topology,Statistics and Probability

Reference134 articles.

1. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. American Association of Physics Teachers, New York (1998)

2. Einstein, A.: Investigations on the Theory of the Brownian Movement. Courier Corporation, Chelmsford (1956)

3. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405 (1931)

4. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38(12), 2265 (1931)

5. Glansdorff, P., Nicolis, G., Prigogine, I.: The thermodynamic stability theory of non-equilibrium states. Proc. Natl. Acad. Sci. 71(1), 197–199 (1974)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Markovian description of a wide class of feedback-controlled systems: application to the feedback flashing ratchet;Journal of Statistical Mechanics: Theory and Experiment;2024-08-12

2. From the Fokker–Planck equation to a contact Hamiltonian system;Journal of Physics A: Mathematical and Theoretical;2024-08-05

3. Beyond Linear Response: Equivalence between Thermodynamic Geometry and Optimal Transport;Physical Review Letters;2024-07-31

4. Analytical solution for optimal protocols of weak drivings;Journal of Statistical Mechanics: Theory and Experiment;2024-07-15

5. Information geometry of Wasserstein statistics on shapes and affine deformations;Information Geometry;2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3