Manifolds of classical probability distributions and quantum density operators in infinite dimensions

Author:

Ciaglia F. M.ORCID,Ibort A.,Jost J.,Marmo G.

Abstract

Abstract The manifold structure of subsets of classical probability distributions and quantum density operators in infinite dimensions is investigated in the context of $$C^{*}$$C-algebras and actions of Banach-Lie groups. Specificaly, classical probability distributions and quantum density operators may be both described as states (in the functional analytic sense) on a given $$C^{*}$$C-algebra $$\mathscr {A}$$A which is Abelian for Classical states, and non-Abelian for Quantum states. In this contribution, the space of states $$\mathscr {S}$$S of a possibly infinite-dimensional, unital $$C^{*}$$C-algebra $$\mathscr {A}$$A is partitioned into the disjoint union of the orbits of an action of the group $$\mathscr {G}$$G of invertible elements of $$\mathscr {A}$$A. Then, we prove that the orbits through density operators on an infinite-dimensional, separable Hilbert space $$\mathcal {H}$$H are smooth, homogeneous Banach manifolds of $$\mathscr {G}=\mathcal {GL}(\mathcal {H})$$G=GL(H), and, when $$\mathscr {A}$$A admits a faithful tracial state $$\tau $$τ like it happens in the Classical case when we consider probability distributions with full support, we prove that the orbit through $$\tau $$τ is a smooth, homogeneous Banach manifold for $$\mathscr {G}$$G.

Funder

Ministerio de Economía y Competitividad

QUITEMAD++

Universidad Carlos III de Madrid

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference55 articles.

1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, 3rd edn. Springer, New York (2012)

2. Adams, M., Ratiu, T., Schmid, R.: The Lie Group Structure of Diffeomorphism Groups and Invertible Fourier Integral Operators with Applications. In: Kac, V. (ed.) Infinite Dimensional Groups with Applications. Mathematical Sciences Research Institute Publications, vol. 4. Springer, New York, NY (1985)

3. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover, New York (1981)

4. Andruchow, E., Stojanoff, D.: Differentiable structure of similarity orbits. J. Oper. Theory 21(2), 349–366 (1989)

5. Andruchow, E., Stojanoff, D.: Geometry of unitary orbits. J. Oper. Theory 26(1), 25–41 (1991)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential arcs in manifolds of quantum states;Frontiers in Physics;2023-02-07

2. Can Čencov Meet Petz;Lecture Notes in Computer Science;2023

3. Group Actions and Monotone Quantum Metric Tensors;Mathematics;2022-07-26

4. Exponential arcs in the manifold of vector states on a $$\sigma $$-finite von Neumann algebra;Information Geometry;2022-01-05

5. On the pseudo-manifold of quantum states;Differential Geometry and its Applications;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3