Abstract
AbstractAfter endowing the space of diagrams of probability spaces with an entropy distance, we study its large-scale geometry by identifying the asymptotic cone as a closed convex cone in a Banach space. We call this cone the tropical cone, and its elements tropical diagrams of probability spaces. Given that the tropical cone has a rich structure, while tropical diagrams are rather flexible objects, we expect the theory of tropical diagrams to be useful for information optimization problems in information theory and artificial intelligence. In a companion article, we give a first application to derive a statement about the entropic cone.
Funder
Max Planck Institute for Mathematics in the Sciences
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献