1. Amari, S.-I.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)
2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
3. Ay, N.: On the locality of the natural gradient for learning in deep Bayesian networks. Info. Geo. (2020). https://doi.org/10.1007/s41884-020-00038-y
4. Ay, N., Montúfar, G., Rauh, J.: Selection criteria for neuromanifolds of stochastic dynamics. In: Advances in Cognitive Neurodynamics, pp. 147–154. Springer (2013)
5. Bernacchia, A., Lengyel, M., Hennequin, G.: Exact natural gradient in deep linear networks and its application to the nonlinear case. In: Bengio, S., et al. (eds.) Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/7f018eb7b301a66658931cb8a93fd6e8Paper.pdf