1. Aurada, M., Feischl, M., Führer, T., Karkulik, M., Praetorius, D.: Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods. Comput. Methods Appl. Math. 13, 305–332 (2013)
2. Aurada, M., Feischl, M., Führer, T., Melenk, J., Praetorius, D.: Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM. ASC Report 07/2012. Institute for Analysis and Scientific Computing, Vienna University of Technology (2012)
3. Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.: Each $$H^{1/2}$$ H 1 / 2 -stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in $${\mathbb{R}}^d$$ R d . Math. Model. Numer. Anal. 47, 1207–1235 (2013)
4. Aurada, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., Praetorius, D.: Convergence of adaptive BEM for some mixed boundary value problem. Appl. Numer. Math. 62(4), 226–245 (2012)
5. Aurada, M., Ferraz-Leite, S., Praetorius, D.: Estimator reduction and convergence of adaptive BEM. Appl. Numer. Math. 62(6), 787–801 (2012)