Author:
Binev Peter,Bonito Andrea,DeVore Ronald,Petrova Guergana
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Adcock, B., Bao, A., Brugiapaglia, S.: Correcting for unknown errors in sparse high-dimensional function approximation. Numer. Math. 142(3), 667–711 (2019)
2. Adcock, B., Brugiapaglia, S., Dexter, N., Moraga, S.: Deep neural networks are effective at learning high-dimensional Hilbert-valued functions from limited data. In: Bruna, J., Hesthaven, J.S., Zdeborova, L. (eds.) Proceedings of The Second Annual Conference on Mathematical and Scientific Machine Learning, vol. 145, pp. 1–36 (2021)
3. Adcock, B., Brugiapaglia, S., Webster, C.: Sparse Polynomial Approximation of High-Dimensional Functions in Computer Science Engineering. Society for Industrial and Applied Mathematics, Philadelphia (2022)
4. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)
5. Barron, A.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)