Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Tobiska, L., Verfurth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations. SIAM J. Numer. Anal. 33(1), 107–127 (1996)
2. Yadav, S., Ganesan, S.: How deep learning performs with singularly perturbed problems? In: 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 293–297 (2019). https://doi.org/10.1109/AIKE.2019.00058
3. Yadav, S., Ganesan, S.: Spde-net: Neural network based prediction of stabilization parameter for supg technique. In: 13th Asian Conference on Machine Learning, Virtually, pp. 268–283 (2021). https://proceedings.mlr.press/v157/yadav21a.html
4. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 32(1), 199–259 (1982). https://doi.org/10.1016/0045-7825(82)90071-8
5. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-di usive equations. Computer Methods in Applied Mechanics and Engineering 73(2), 173–189 (1989) https://doi.org/10.1016/0045-7825(89)90111-4