Computing several eigenvalues of nonlinear eigenvalue problems by selection

Author:

Hochstenbach Michiel E.ORCID,Plestenjak Bor

Abstract

AbstractComputing more than one eigenvalue for (large sparse) one-parameter polynomial and general nonlinear eigenproblems, as well as for multiparameter linear and nonlinear eigenproblems, is a much harder task than for standard eigenvalue problems. We present simple but efficient selection methods based on divided differences to do this. Selection means that the approximate eigenpair is picked from candidate pairs that satisfy a certain suitable criterion. The goal of this procedure is to steer the process away from already detected pairs. In contrast to locking techniques, it is not necessary to keep converged eigenvectors in the search space, so that the entire search space may be devoted to new information. The selection techniques are applicable to many types of matrix eigenvalue problems; standard deflation is feasible only for linear one-parameter problems. The methods are easy to understand and implement. Although the use of divided differences is well known in the context of nonlinear eigenproblems, the proposed selection techniques are new for one-parameter problems. For multiparameter problems, we improve on and generalize our previous work. We also show how to use divided differences in the framework of homogeneous coordinates, which may be appropriate for generalized eigenvalue problems with infinite eigenvalues. While the approaches are valuable alternatives for one-parameter nonlinear eigenproblems, they seem the only option for multiparameter problems.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Nonlinearization of 3-parameter Eigenvalue Problems;Communications in Mathematics and Applications;2022-11-29

2. Computing eigenvalues of semi-infinite quasi-Toeplitz matrices;Numerical Algorithms;2022-08-15

3. Orthogonal Iterations on Companion-Like Pencils;Journal of Scientific Computing;2022-02-20

4. Modified successive approximation methods for the nonlinear eigenvalue problems;Applied Numerical Mathematics;2021-06

5. Nonlinearizing Two-parameter Eigenvalue Problems;SIAM Journal on Matrix Analysis and Applications;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3