Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading

Author:

Apel Thomas,Kempf VolkerORCID

Abstract

AbstractThe velocity solution of the incompressible Stokes equations is not affected by changes of the right hand side data in form of gradient fields. Most mixed methods do not replicate this property in the discrete formulation due to a relaxation of the divergence constraint which means that they are not pressure-robust. A recent reconstruction approach for classical methods recovers this invariance property for the discrete solution, by mapping discretely divergence-free test functions to exactly divergence-free functions in the sense of $${\varvec{H}}({\text {div}})$$ H ( div ) . Moreover, the Stokes solution has locally singular behavior in three-dimensional domains near concave edges, which degrades the convergence rates on quasi-uniform meshes and makes anisotropic mesh grading reasonable in order to regain optimal convergence characteristics. Finite element error estimates of optimal order on meshes of tensor-product type with appropriate anisotropic grading are shown for the pressure-robust modified Crouzeix–Raviart method using the reconstruction approach. Numerical examples support the theoretical results.

Funder

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Algebra and Number Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3