A linear algebra perspective on the random multi-block ADMM: the QP case

Author:

Cipolla StefanoORCID,Gondzio Jacek

Abstract

AbstractEmbedding randomization procedures in the Alternating Direction Method of Multipliers (ADMM) has recently attracted an increasing amount of interest as a remedy to the fact that the direct multi-block generalization of ADMM is not necessarily convergent. Even if, in practice, the introduction of such techniques could mitigate the diverging behaviour of the multi-block extension of ADMM, from the theoretical point of view, it can ensure just the convergence in expectation, which may not be a good indicator of its robustness and efficiency. In this work, analysing the strongly convex quadratic programming case from a linear algebra perspective, we interpret the block Gauss–Seidel sweep performed by the multi-block ADMM in the context of the inexact Augmented Lagrangian Method. Using the proposed analysis, we are able to outline an alternative technique to those present in the literature which, supported from stronger theoretical guarantees, is able to ensure the convergence of the multi-block generalization of the ADMM method.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Algebra and Number Theory

Reference58 articles.

1. Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-linear Programming. With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the Social Sciences, vol. II. Stanford University Press, Stanford (1958)

2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). https://doi.org/10.1017/S0962492904000212

3. Billingsley, P.: Probability and Measure. Wiley Series in Probability and Statistics. Wiley, Hoboken (2012)

4. Birken, P.: Termination criteria for inexact fixed-point schemes. Numer. Linear Algebra Appl. 22(4), 702–716 (2015). https://doi.org/10.1002/nla.1982

5. Bodewig, E.: Matrix Calculus. Elsevier, Amsterdam (2014)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3