Author:
Zhang Xiaotian,He Weiping,Billinghurst Mark,Qin Yunfei,Yang Lingxiao,Liu Daisong,Wang Zenglei
Abstract
AbstractManual precise manipulation of objects is an essential skill in everyday life, and Augmented Reality (AR) is increasingly being used to support such operations. In this study, we investigate whether detailed visualizations of position and orientation deviations are helpful for AR-assisted manual precise manipulation of objects. We developed three AR instructions with different visualizations of deviations: the logical deviation baseline instruction, the precise numerical deviations-based instruction, and the intuitive color-mapped deviations-based instruction. All three instructions visualized the required directions for manipulation and the logical values of whether the object met the accuracy requirements. Additionally, the latter two instructions provided detailed visualizations of deviations through numerical text and color-mapping respectively. A user study was conducted with 18 participants to compare the three AR instructions. The results showed that there were no significant differences found in speed, accuracy, perceived ease-of-use, and perceived workload between the three AR instructions. We found that the visualizations of the required directions for manipulation and the logical values of whether the object met the accuracy requirements were sufficient to guide manual precise manipulation. The detailed visualizations of the real-time deviations could not improve the speed and accuracy of manual precise manipulation, and although they could improve the perceived ease-of-use and user experience, the effects were not significant. Based on the results, several recommendations were provided for designing AR instructions to support precise manual manipulation.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC