Real and perceived feet orientation under fatiguing and non-fatiguing conditions in an immersive virtual reality environment

Author:

Giardulli BenedettoORCID,Battista SimoneORCID,Sansone Lucia GraziaORCID,Manoni MattiaORCID,Francini LucaORCID,Leuzzi GaiaORCID,Job MirkoORCID,Testa MarcoORCID

Abstract

AbstractLower limbs position sense is a complex yet poorly understood mechanism, influenced by many factors. Hence, we investigated the position sense of lower limbs through feet orientation with the use of Immersive Virtual Reality (IVR). Participants had to indicate how they perceived the real orientation of their feet by orientating a virtual representation of the feet that was shown in an IVR scenario. We calculated the angle between the two virtual feet (α-VR) after a high-knee step-in-place task. Simultaneously, we recorded the real angle between the two feet (α-R) (T1). Hence, we assessed whether the acute fatigue impacted the position sense. The same procedure was repeated after inducing muscle fatigue (T2) and after 10 min from T2 (T3). Finally, we also recorded the time needed to confirm the perceived position before and after the acute fatigue protocol. Thirty healthy adults (27.5 ± 3.8: 57% women, 43% men) were immersed in an IVR scenario with a representation of two feet. We found a mean difference between α-VR and α-R of 20.89° [95% CI: 14.67°, 27.10°] in T1, 16.76° [9.57°, 23.94°] in T2, and 16.34° [10.00°, 22.68°] in T3. Participants spent 12.59, 17.50 and 17.95 s confirming the perceived position of their feet at T1, T2, T3, respectively. Participants indicated their feet as forwarding parallel though divergent, showing a mismatch in the perceived position of feet. Fatigue seemed not to have an impact on position sense but delayed the time to accomplish this task.

Funder

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3