Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms

Author:

Zaidi Syed Fawad M.,Shafiabady NiushaORCID,Beilby Justin

Abstract

AbstractCybersickness (CS) affects a large proportion of virtual reality (VR) users causing a combination of nausea, headaches and dizziness which would create barriers to the users, VR designers/developers and the stakeholders in the production industry. Although design principles suggest methods to avoid CS, challenges remain as new demands and systems continue to penetrate the competitive market. The dilemma is whether to use VR technology by experiencing the ultimate virtual world using a head-mounted display (HMD) with possible CS triggers or to avoid the triggers by avoiding using VR. With the huge success and potential in the entertainment industry, it is very important to focus on the solutions to handling CS dilemmas. Therefore, the main observation for the developers is to have a guide around the set of established design principles aiming to broadly reduce CS. In this paper, we provide a method to apply artificial intelligence (AI) techniques and use machine learning (ML) algorithms including support vector machines (SVMs), decision trees (DTs) and K-nearest neighbours (KNNs) to predict CS outcomes. Based on our findings, we have observed that DT and SVM surpassed KNN in test accuracy. Additionally, DT exhibited better results than both SVM and KNN in train accuracy. By exploiting the power of ML, developers will be able to predict the potential occurrence of CS while developing VR projects to find ways to alleviate CS more effectively.

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3