A real-time wearable AR system for egocentric vision on the edge

Author:

Karakostas IasonORCID,Valakou Aikaterini,Gavgiotaki Despoina,Stefanidi Zinovia,Pastaltzidis Ioannis,Tsipouridis Grigorios,Kilis Nikolaos,Apostolakis Konstantinos C.,Ntoa Stavroula,Dimitriou Nikolaos,Margetis George,Tzovaras Dimitrios

Abstract

AbstractReal-time performance is critical for Augmented Reality (AR) systems as it directly affects responsiveness and enables the timely rendering of virtual content superimposed on real scenes. In this context, we present the DARLENE wearable AR system, analysing its specifications, overall architecture and core algorithmic components. DARLENE comprises AR glasses and a wearable computing node responsible for several time-critical computation tasks. These include computer vision modules developed for the real-time analysis of dynamic scenes supporting functionalities for instance segmentation, tracking and pose estimation. To meet real-time requirements in limited resources, concrete algorithmic adaptations and design choices are introduced. The proposed system further supports real-time video streaming and interconnection with external IoT nodes. To improve user experience, a novel approach is proposed for the adaptive rendering of AR content by considering the user’s stress level, the context of use and the environmental conditions for adjusting the level of presented information towards enhancing their situational awareness. Through extensive experiments, we evaluate the performance of individual components and end-to-end pipelines. As the proposed system targets time-critical security applications where it can be used to enhance police officers’ situational awareness, further experimental results involving end users are reported with respect to overall user experience, workload and evaluation of situational awareness.

Funder

Horizon 2020 Framework Programme

Centre for Research & Technology Hellas

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3