Unconstrained lightweight control interface for robot-assisted minimally invasive surgery using MediaPipe framework and head-mounted display

Author:

Rhee WounsukORCID,Kim Young GyunORCID,Lee Jong HyeonORCID,Shim Jae WooORCID,Kim Byeong SooORCID,Yoon DanORCID,Cho MinwooORCID,Kim SungwanORCID

Abstract

AbstractRobotic surgery is preferred over open or laparoscopic surgeries due to its intuitiveness and convenience. However, prolonged use of surgical robots can cause neck pain and joint fatigue in wrist and fingers. Also, input systems are bulky and difficult to maintain. To resolve these issues, we propose a novel input module based on real-time 3D hand tracking driven by RGB images and MediaPipe framework to control surgical robots such as patient side manipulator (PSM) and endoscopic camera manipulator (ECM) of da Vinci research kit. In this paper, we explore the mathematical basis of the proposed 3D hand tracking module and provide a proof-of-concept through user experience (UX) studies conducted in a virtual environment. End-to-end latencies for controlling PSM and ECM were 170 ± 10 ms and 270 ± 10 ms, respectively. Of fifteen novice participants recruited for the UX study, thirteen managed to reach a qualifiable level of proficiency after 50 min of practice and fatigue of hand and wrist were imperceivable. Therefore, we concluded that we have successfully developed a robust 3D hand tracking module for surgical robot control and in the future, it would hopefully reduce hardware cost and volume as well as resolve ergonomic problems. Furthermore, RGB image driven 3D hand tracking module developed in our study can be widely applicable to diverse fields such as extended reality (XR) development and remote robot control. In addition, we provide a new standard for evaluating novel input modalities of XR environments from a UX perspective.

Funder

Korea Medical Device Development Fund

Seoul National University

SNUH Research Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3