The virtualization of human–robot interactions: a user-centric workload assessment

Author:

Nenna FedericaORCID,Orso ValeriaORCID,Zanardi Davide,Gamberini LucianoORCID

Abstract

AbstractInterest in the virtualization of human–robot interactions is increasing, yet the impact that collaborating with either virtual or physical robots has on the human operator’s mental state is still insufficiently studied. In the present work, we aimed to fill this gap by conducting a systematic assessment of a human–robot collaborative framework from a user-centric perspective. Mental workload was measured in participants working in synergistic co-operation with a physical and a virtual collaborative robot (cobot) under different levels of task demands. Performance and implicit and explicit workload were assessed as a function of pupil size variation and self-reporting questionnaires. In the face of a similar self-reported mental demand when maneuvering the virtual or physical cobot, operators showed shorter operation times and lower implicit workload when interacting with the virtual cobot compared to its physical counterpart. Furthermore, the benefits of collaborating with a virtual cobot most vividly manifested when the user had to position the robotic arm with higher precision. These results shed light on the feasibility and importance of relying on multidimensional assessments in real-life work settings, including implicit workload predictors such as pupillometric measures. From a broader perspective, our findings suggest that virtual simulations have the potential to bring significant advantages for both the user's mental well-being and industrial production, particularly for highly complex and demanding tasks.

Funder

Horizon 2020

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Industry 5.0: A comprehensive insight into the future of work, social sustainability, sustainable development, and career;Australian Journal of Career Development;2024-03-25

2. Getting Closer to Real-world: Monitoring Humans Working with Collaborative Industrial Robots;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

3. Impact of Collaborative Robots on Human Trust, Anxiety, and Workload: Experiment Findings;IFIP Advances in Information and Communication Technology;2024

4. Bibliography;Cognitive Assistant Supported Human-Robot Collaboration;2024

5. Conclusions and future lines;Cognitive Assistant Supported Human-Robot Collaboration;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3