Abstract
AbstractTransfer functions with a high translational gain can increase the range of walking in virtual reality. These functions determine how much virtual movements are amplified compared to the corresponding physical movements. However, it is unclear how the design of these functions influences the user’s gait and experience when walking with high gain values. In a mixed-methods study with 20 users, we find that their best transfer functions are nonlinear and asymmetrical for starting and stopping. We use an optimization approach to determine individually optimized functions that are significantly better than a common approach of using a constant gain. Based on interviews, we also discuss what qualities of walking matter to users and how these vary across different functions. Our work shows that it is possible to create high-gain walking techniques that offer dramatically increased range of motion and speed but still feel like normal walking.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献